Measurement of Ion Damage and Damage Relaxation in Silicon Microdisk Cavities using a Lithium Focused Ion Beam

William McGehee, Thomas Michels, Vladimir Aksyuk, and Jabez McClelland

Center for Nanoscale Science and Technology
National Institute of Standards and Technology, Gaithersburg, MD 20899 USA

ABSTRACT

We selectively damage a silicon microdisk optical cavity using a nanoscale focused ion beam of Li+ to observe the dynamics of ion-induced damage in crystalline silicon at room temperature. The 4 keV ion beam is pulsed at the location of the optical mode in the microdisk cavity, generating silicon interstitial-vacancy (IV) pairs in the cavity. This damage changes the effective path length of the cavity corresponding to GHz-scale shifts of the cavity resonances for a millisecond ion pulse at 1 pA beam current. The ion-induced shift of the cavity resonance is measured spectroscopically and allows for measurement of the ion damage at sub-millisecond timescale. The lithium focused ion beam is a NIST-developed instrument that uses a laser cooled gas of atomic lithium as a high brightness source of photoionized lithium ions which can be focused to a 50 nm spot.